Publication
Title
Fusing spectral and textural information in near-infrared hyperspectral imaging to improve green tea classification modelling
Author
Abstract
Hyperspectral imaging (HSI) can acquire data in two modes: imaging and spectroscopy, revealing the spatially-resolved spectral properties of materials. Traditional HSI processing in the close-range domain primarily focuses on the spectral information with minimal utilisation of the spatial information present in the data. The present work describes a methodology for utilising the spatial information present in HSI data to improve classification modelling over that achievable with spectral information alone. The methodology has been evaluated using near infrared (NIR) HSI data of sixteen green tea products from seven different countries. The methodology involves selecting and sharpening an image plane to enhance the textural details. The textural information is then extracted from the statistical properties of the grey level co-occurrence matrix (GLCM) of the sharpened image plane using a moving window operation. Finally, the textural properties are combined with the spectral information using one of the three different levels of data fusion, i.e. raw data level, feature level and decision level. Raw data-level fusion involved concatenating the spectral and textural data before performing the classification task. The feature-level fusion involved performing principal component analysis (PCA) on spectral and textural information and combining the PC scores obtained prior to performing classification. Decision-level fusion involved a majority voting scheme to enhance the final classification maps. All the classification tasks were performed using multi-class support vector machine (SVM) models. The results showed that combining the textural and spectral information during modelling resulted in improved classification of the sixteen green tea products compared to models built using spectral or textural information alone.
Language
English
Source (journal)
Journal of food engineering. - Barking
Publication
Barking : 2019
ISSN
0260-8774
DOI
10.1016/J.JFOODENG.2019.01.009
Volume/pages
249 (2019) , p. 40-47
ISI
000459843100006
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
ModLife: Advancing Modelling for Process-Product Innovation, Optimization, Monitoring and Control in Life Science Industries
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 04.04.2019
Last edited 02.10.2024
To cite this reference