Publication
Title
Hippos (Hippopotamus amphibius) : the animal silicon pump
Author
Abstract
While the importance of grasslands in terrestrial silicon (Si) cycling and fluxes to rivers is established, the influence of large grazers has not been considered. Here, we show that hippopotamuses are key actors in the savannah biogeochemical Si cycle. Through a detailed analysis of Si concentrations and stable isotope compositions in multiple ecosystem compartments of a savannah-river continuum, we constrain the processes influencing the Si flux. Hippos transport 0.4 metric tons of Si day−1 by foraging grass on land and directly egesting in the water. As such, they bypass complex retention processes in secondary soil Si pools. By balancing internal processes of dissolution and precipitation in the river sediment, we calculate that hippos affect up to 76% of the total Si flux. This can have a large impact on downstream lake ecosystems, where Si availability directly affects primary production in the diatom-dominated phytoplankton communities.
Language
Dutch, English
Source (journal)
Science Advances
Publication
2019
ISSN
2375-2548
DOI
10.1126/SCIADV.AAV0395
Volume/pages
5 :5 (2019) , 10 p.
Article Reference
eaav0395
ISI
000470125000026
Pubmed ID
31049394
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Global Ecosystem Functioning and Interactions with Global Change.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 02.05.2019
Last edited 02.10.2024
To cite this reference