Publication
Title
Truncating mutations in UBAP1 cause hereditary spastic paraplegia
Author
Abstract
The diagnostic gap for rare neurodegenerative diseases is still considerable, despite continuous advances in gene identification. Many novel Mendelian genes have only been identified in a few families worldwide. Here we report the identification of an autosomal-dominant gene for hereditary spastic paraplegia (HSP) in 10 families that are of diverse geographic origin and whose affected members all carry unique truncating changes in a circumscript region of UBAP1 (ubiquitin-associated protein 1). HSP is a neurodegenerative disease characterized by progressive lower-limb spasticity and weakness, as well as frequent bladder dysfunction. At least 40% of affected persons are currently undiagnosed after exome sequencing. We identified pathological truncating variants in UBAP1 in affected persons from Iran, USA, Germany, Canada, Spain, and Bulgarian Roma. The genetic support ranges from linkage in the largest family (LOD = 8.3) to three confirmed de novo mutations. We show that mRNA in the fibroblasts of affected individuals escapes nonsense-mediated decay and thus leads to the expression of truncated proteins; in addition, concentrations of the full-length protein are reduced in comparison to those in controls. This suggests either a dominant-negative effect or haploinsufficiency. UBAP1 links endosomal trafficking to the ubiquitination machinery pathways that have been previously implicated in HSPs, and UBAP1 provides a bridge toward a more unified pathophysiology.
Language
English
Source (journal)
The American journal of human genetics / American Society of Human Genetics [Bethesda, Md] - New York, N.Y., 1949, currens
Publication
New York, N.Y. : 2019
ISSN
0002-9297 [print]
1537-6605 [online]
DOI
10.1016/J.AJHG.2019.03.001
Volume/pages
104 :4 (2019) , p. 767-773
ISI
000463474700017
Pubmed ID
30929741
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Solving the unsolved Rare Diseases (Solve-Rd).
Unraveling the molecular architecture of peripheral nerves- a system genetics approach.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 02.05.2019
Last edited 02.10.2024
To cite this reference