Publication
Title
Untargeted liquid chromatography-mass spectrometry metabolomics to assess drug-induced cholestatic features in HepaRG® cells
Author
Abstract
Cholestasis is a liver disease associated with retention of bile in the liver, which leads to local hepatic inflammation and severe liver damage. In order to investigate the mode of action of drug-induced cholestasis, in vitro models have shown to be able to recapitulate important elements of this disease. In this study, we applied untargeted metabolomics to investigate the metabolic perturbances in HepaRG® cells exposed for 24 h and 72 h to bosentan, a cholestatic reference toxicant. Intracellular profiles were extracted and analysed with liquid chromatography and accurate-mass spectrometry. Metabolites of interest were selected using partial least-squares discriminant analysis and random forest classifier models. The observed metabolic patterns associated with cholestasis in vitro were complex. Acute (24 h) exposure revealed metabolites related to apoptosis, such as ceramide and triglyceride accumulation, in combination with phosphatidylethanolamine, choline and carnitine depletion. Metabolomic alterations during exposure to lower dosages and a prolonged exposure (72 h) included carnitine upregulation and changes in the polyamine metabolism. These metabolites were linked to changes in phospholipid metabolism, mitochondrial pathways and energy homeostasis. The metabolic changes confirmed the mitotoxic effects of bosentan and revealed the potential involvement of phospholipid metabolism as part of the mode of action of drug-induced cholestasis.
Language
English
Source (journal)
Toxicology and applied pharmacology. - London
Publication
London : 2019
ISSN
0041-008X
DOI
10.1016/J.TAAP.2019.114666
Volume/pages
379 (2019) , 9 p.
Article Reference
UNSP 114666
ISI
000483450400012
Pubmed ID
31323262
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
The development of a metabolomics-based in vitro model for human hepatotoxicity
Development of an integrated strategy to characterize new lead compounds based on natural pro-drugs and their metabolites.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 30.08.2019
Last edited 02.10.2024
To cite this reference