Publication
Title
Tuning the electronic and magnetic properties of antimonene nanosheets via point defects and external fields: first-principles calculations
Author
Abstract
Defects are inevitably present in materials, and their existence in a material strongly affects its fundamental physical properties. We have systematically investigated the effects of surface adsorption, substitutional impurities, defect engineering, an electric field and strain engineering on the structural, electronic and magnetic properties of antimonene nanosheets, using spin-polarized density functional calculations based on first-principles. The adsorption or substitution of atoms can locally modify the atomic and electronic structures as well as induce a variety of electronic behaviors including metal, half-metal, ferromagnetic metal, dilute magnetic semiconductor and spin-glass semiconductor. Our calculations show that the presence of typical defects (vacancies and Stone-Wales defect) in antimonene affects the geometrical symmetry as well as the band gap in the electronic band structure and induces magnetism to antimonene. Moreover, by applying an external electric field and strain (uniaxial and biaxial), the electronic structure of antimonene can be easily modified. The calculation results presented in this paper provide a fundamental insight into the tunable nature of the electronic properties of antimonene, supporting its promise for use in future applications.
Language
English
Source (journal)
Physical chemistry, chemical physics / Royal Society of Chemistry [London] - Cambridge, 1999, currens
Publication
Cambridge : The Royal Society of Chemistry , 2019
ISSN
1463-9076 [print]
1463-9084 [online]
DOI
10.1039/C9CP01378D
Volume/pages
21 :20 (2019) , p. 10552-10566
ISI
000476561000031
Pubmed ID
31073575
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 10.09.2019
Last edited 02.10.2024
To cite this reference