Publication
Title
Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)-Associated Defects in c9FTD/ALS
Author
Abstract
A repeat expansion in C9ORF72 causes frontotemporal dementia and amyotrophic lateral sclerosis (c9FTD/ ALS). RNA of the expanded repeat (r(GGGGCC)(exp)) forms nuclear foci or undergoes repeat-associated non-ATG (RAN) translation, producing "c9RAN proteins.'' Since neutralizing r(GGGGCC) exp could inhibit these potentially toxic events, we sought to identify small-molecule binders of r(GGGGCC) exp. Chemical and enzymatic probing of r(GGGGCC) 8 indicate that it adopts a hairpin structure in equilibrium with a quadruplex structure. Using this model, bioactive small molecules targeting r(GGGGCC) exp were designed and found to significantly inhibit RAN translation and foci formation in cultured cells expressing r(GGGGCC) 66 and neurons transdifferentiated from fibroblasts of repeat expansion carriers. Finally, we show that poly(GP) c9RANproteins are specifically detected in c9ALS patient cerebrospinal fluid. Our findings highlight r(GGGGCC)(exp)-binding small molecules as a possible c9FTD/ALS therapeutic and suggest that c9RAN proteins could potentially serve as a pharmacodynamic biomarker to assess efficacy of therapies that target r(GGGGCC)(exp).
Language
English
Source (journal)
Neuron. - Cambridge, Mass.
Publication
Cambridge, Mass. : 2014
ISSN
0896-6273
DOI
10.1016/J.NEURON.2014.07.041
Volume/pages
83 :5 (2014) , p. 1043-1050
ISI
000341419000008
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
External links
Web of Science
Record
Identifier
Creation 25.09.2019
Last edited 28.08.2024
To cite this reference