Publication
Title
On the evolution and physiology of cable bacteria
Author
Abstract
Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur world-wide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genomics and metagenomics to retrieve draft genomes of 3 marine Candidatus Electrothrix and 1 freshwater Ca. Electronema species. These genomes contain >50% unknown genes but still share their core genomic makeup with sulfate-reducing and sulfur-disproportionating Desulfobulbaceae, with few core genes lost and 212 unique genes (from 197 gene families) conserved among cable bacteria. Last common ancestor analysis indicates gene divergence and lateral gene transfer as equally important origins of these unique genes. With support from metaproteomics of a Ca. Electronema enrichment, the genomes suggest that cable bacteria oxidize sulfide by reversing the canonical sulfate reduction pathway and fix CO2 using the Wood-Ljungdahl pathway. Cable bacteria show limited organotrophic potential, may assimilate smaller organic acids and alcohols, fix N-2, and synthesize polyphosphates and polyglucose as storage compounds; several of these traits were confirmed by cell-level experimental analyses. We propose a model for electron flow from sulfide to oxygen that involves periplasmic cytochromes, yet-unidentified conductive periplasmic fibers, and periplasmic oxygen reduction. This model proposes that an active cable bacterium gains energy in the anodic, sulfide-oxidizing cells, whereas cells in the oxic zone flare off electrons through intense cathodic oxygen respiration without energy conservation; this peculiar form of multicellularity seems unparalleled in the microbial world.
Language
English
Source (journal)
Proceedings of the National Academy of Sciences of the United States of America. - Washington, D.C.
AMERICA
Publication
Washington, D.C. : 2019
ISSN
0027-8424 [Print]
1091-6490 [Online]
DOI
10.1073/PNAS.1903514116
Volume/pages
116 :38 (2019) , p. 19116-19125
ISI
000486388400058
Pubmed ID
31427514
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
COULOMBUS: Electric Currents in Sediment and Soil
SEDBIOGEOCHEM 2.0: Hardwiring the ocean floor: the impact of microbial electrical circuitry on biogeochemical cycling in marine sediments
Biogeochemical cycling, redox transformations and microbial actors in electrified sediment ecosystems.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 07.10.2019
Last edited 02.10.2024
To cite this reference