Title
|
|
|
|
Long-range vortex transfer in superconducting nanowires
| |
Author
|
|
|
|
| |
Abstract
|
|
|
|
Under high-enough values of perpendicularly-applied magnetic field and current, a type-II superconductor presents a finite resistance caused by the vortex motion driven by the Lorentz force. To recover the dissipation-free conduction state, strategies for minimizing vortex motion have been intensely studied in the last decades. However, the non-local vortex motion, arising in areas depleted of current, has been scarcely investigated despite its potential application for logic devices. Here, we propose a route to transfer vortices carried by non-local motion through long distances (up to 10 micrometers) in 50 nm-wide superconducting WC nanowires grown by Ga+ Focused Ion Beam Induced Deposition. A giant non-local electrical resistance of 36 Omega has been measured at 2 K in 3 mu m-long nanowires, which is 40 times higher than signals reported for wider wires of other superconductors. This giant effect is accounted for by the existence of a strong edge confinement potential that hampers transversal vortex displacements, allowing the long-range coherent displacement of a single vortex row along the superconducting channel. Experimental results are in good agreement with numerical simulations of vortex dynamics based on the time-dependent Ginzburg-Landau equations. Our results pave the way for future developments on information technologies built upon single vortex manipulation in nano-superconductors. |
| |
Language
|
|
|
|
English
| |
Source (journal)
|
|
|
|
Scientific reports. - London, 2011, currens
| |
Publication
|
|
|
|
London
:
Nature Publishing Group
,
2019
| |
ISSN
|
|
|
|
2045-2322
| |
DOI
|
|
|
|
10.1038/S41598-019-48887-7
| |
Volume/pages
|
|
|
|
9
(2019)
, 10 p.
| |
Article Reference
|
|
|
|
12386
| |
ISI
|
|
|
|
000482708800004
| |
Pubmed ID
|
|
|
|
31455848
| |
Medium
|
|
|
|
E-only publicatie
| |
Full text (Publisher's DOI)
|
|
|
|
| |
Full text (open access)
|
|
|
|
| |
|