Publication
Title
Biomarkers for grain yield stability in rice under drought stress
Author
Abstract
Crop yield stability requires an attenuation of the reduction of yield losses caused by environmental stresses such as drought. Using a combination of metabolomics and high-throughput colorimetric assays, we analysed central metabolism and oxidative stress status in the flag leaf of 292 indica rice (Oryza sativa) accessions. Plants were grown in the field and were, at the reproductive stage, exposed to either well-watered or drought conditions to identify the metabolic processes associated with drought-induced grain yield loss. Photorespiration, protein degradation, and nitrogen recycling were the main processes involved in the drought-induced leaf metabolic reprogramming. Molecular markers of drought tolerance and sensitivity in terms of grain yield were identified using a multivariate model based on the values of the metabolites and enzyme activities across the population. The model highlights the central role of the ascorbate–glutathione cycle, particularly dehydroascorbate reductase, in minimizing drought-induced grain yield loss. In contrast, malondialdehyde was an accurate biomarker for grain yield loss, suggesting that drought-induced lipid peroxidation is the major constraint under these conditions. These findings highlight new breeding targets for improved rice grain yield stability under drought.
Language
English
Source (journal)
Journal of experimental botany. - Oxford
Publication
Oxford : 2020
ISSN
0022-0957
DOI
10.1093/JXB/ERZ221
Volume/pages
71 :2 (2020) , p. 669-683
Article Reference
erz221
ISI
000524911200019
Pubmed ID
31087074
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 04.11.2019
Last edited 28.11.2024
To cite this reference