Publication
Title
Field-experiment constraints on the enhancement of the terrestrial carbon sink by fertilization
Author
Abstract
Clarifying how increased atmospheric CO2 concentration (eCO(2)) contributes to accelerated land carbon sequestration remains important since this process is the largest negative feedback in the coupled carbon-climate system. Here, we constrain the sensitivity of the terrestrial carbon sink to eCO(2) over the temperate Northern Hemisphere for the past five decades, using 12 terrestrial ecosystem models and data from seven CO2 enrichment experiments. This constraint uses the heuristic finding that the northern temperate carbon sink sensitivity to eCO(2) is linearly related to the site-scale sensitivity across the models. The emerging data-constrained eCO(2) sensitivity is 0.64 +/- 0.28 PgC yr(-1) per hundred ppm of eCO(2). Extrapolating worldwide, this northern temperate sensitivity projects the global terrestrial carbon sink to increase by 3.5 +/- 1.9 PgC yr(-1) for an increase in CO2 of 100 ppm. This value suggests that CO2 fertilization alone explains most of the observed increase in global land carbon sink since the 1960s. More CO2 enrichment experiments, particularly in boreal, arctic and tropical ecosystems, are required to explain further the responsible processes.
Language
English
Source (journal)
Nature geoscience. - London, 2008, currens
Publication
London : Nature Publishing Group , 2019
ISSN
1752-0894
DOI
10.1038/S41561-019-0436-1
Volume/pages
12 :10 (2019) , p. 809-814
ISI
000488223800008
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Global Ecosystem Functioning and Interactions with Global Change.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 08.11.2019
Last edited 02.10.2024
To cite this reference