Publication
Title
Global vegetation biomass production efficiency constrained by models and observations
Author
Abstract
Plants use only a fraction of their photosynthetically derived carbon for biomass production (BP). The biomass production efficiency (BPE), defined as the ratio of BP to photosynthesis, and its variation across and within vegetation types is poorly understood, which hinders our capacity to accurately estimate carbon turnover times and carbon sinks. Here, we present a new global estimation of BPE obtained by combining field measurements from 113 sites with 14 carbon cycle models. Our best estimate of global BPE is 0.41 +/- 0.05, excluding cropland. The largest BPE is found in boreal forests (0.48 +/- 0.06) and the lowest in tropical forests (0.40 +/- 0.04). Carbon cycle models overestimate BPE, although models with carbon-nitrogen interactions tend to be more realistic. Using observation-based estimates of global photosynthesis, we quantify the global BP of non-cropland ecosystems of 41 +/- 6 Pg C/year. This flux is less than net primary production as it does not contain carbon allocated to symbionts, used for exudates or volatile carbon compound emissions to the atmosphere. Our study reveals a positive bias of 24 +/- 11% in the model-estimated BP (10 of 14 models). When correcting models for this bias while leaving modeled carbon turnover times unchanged, we found that the global ecosystem carbon storage change during the last century is decreased by 67% (or 58 Pg C).
Language
English
Source (journal)
Global change biology. - Oxford, 1995, currens
Publication
Hoboken : Wiley , 2019
ISSN
1354-1013 [print]
1365-2486 [online]
DOI
10.1111/GCB.14816
Volume/pages
11 p.
ISI
000487845700001
Pubmed ID
31560157
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Effects of phosphorus limitations on Life, Earth system and Society (IMBALANCE-P).
Global Ecosystem Functioning and Interactions with Global Change.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 08.11.2019
Last edited 02.10.2024
To cite this reference