Publication
Title
Actinobacterium isolated from a semi-arid environment improves the drought tolerance in maize (Zea mays L.)
Author
Abstract
Drought represents a major constraint for agricultural productivity and food security worldwide. Plant growth promoting actinobacteria have attracted the attention as a promising approach to enhance plant growth and yield under stressful conditions. In this regard, bioprospecting in arid and semi-arid environments could reveal uncommon bacteria with improved biological activities. In the present study, the ability of actinobacteria isolated from a semi-arid environment (Saudi Arabia) to mitigate the negative impact of drought on growth and physiology of maize, a drought-sensitive crop, has been investigated. Among the different actinobacterial isolates screened for secondary metabolites production and biological activities, isolate Ac5 showed high ability of flavonoid, phytohormones and siderophores production. Moreover, Ac5 improved the growth and photosynthesis and induced a global metabolic change in the bacterized plants under water-deficit conditions. Interestingly, Ac5 treatment significantly mitigated the detrimental effects of drought stress on maize. Reduced H2O2 accumulation and lipid peroxidation accompanied with higher levels of molecular antioxidants (total ascorbate, glutathione, tocopherols, phenolic acids and flavonoids) were observed in the bacterized plants. From the osmoregulation point of view, drought-stressed bacterized maize accumulated higher levels of compatible solutes, such as sucrose, total soluble sugars, proline, arginine and glycine betaine, as compared with the non-bacterized plants. Therefore, this study highlights the comprehensive impact of actinobacteria on the global plant metabolism and suggests the potential utilization of actinobacteria isolated from semi-arid environments to mitigate the negative impact of drought on crop plants.
Language
English
Source (journal)
Plant physiology and biochemistry. - Paris, 1987, currens
Publication
Paris : 2019
ISSN
0981-9428
DOI
10.1016/J.PLAPHY.2019.06.029
Volume/pages
142 (2019) , p. 15-21
ISI
000487569200003
Pubmed ID
31252370
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 08.11.2019
Last edited 06.01.2025
To cite this reference