Publication
Title
The effect of copper on behaviour, memory, and associative learning ability of zebrafish (Danio rerio)
Author
Abstract
Copper is an essential element in many biological processes, but may exert toxic effects at levels surplus to metabolic requirements. Herein we assess the effect of copper on zebrafish behaviour using two assays, namely the novel tank diving test and a T-maze test with food reward. Novel tank diving tests were conducted on days 0, 4, and 10 of a 10 day Cu exposure (at concentrations of 0.77 μM (25% of the 240 h LC50) and 1.52 μM (50% of the 240 h LC50) to assess the alterations of behavioural responses in repeating novel tank diving assays and the effect of Cu on these patterns. Results demonstrate habituation to novelty, which is an indicator of spatial memory. Copper exposure had no effect on the latency of entry into the upper zones of the tank, nor on the total time spent therein, but did cause a greater number of freezing bouts in comparison to the control group. Additionally, Cu exposure had no effect on the habituation responses of zebrafish. Using the T-maze assay, we tested the effect of prior exposure to Cu for 10 days on subsequent behavioural trainings. The T-maze protocol was based on associative learning, where a visual stimulus (colour) was linked with a natural stimulus (food). Results of the control group showed that zebrafish are able to perform associative learning tasks. Moreover, Cu was found to negatively affect the associative learning capabilities. Specifically, while zebrafish in the control group achieved a significant number of correct choices (leading to food reward) throughout the T-maze training, such a trend was not observed for Cu exposed fish. Thus at the exposure concentrations and exposure times considered herein, Cu has no determinative impact on instinctual behavioural responses of zebrafish in repeated novel tank diving assays but does limit the associative learning capabilities.
Language
English
Source (journal)
Ecotoxicology and environmental safety. - New York
Publication
New York : 2020
ISSN
0147-6513
DOI
10.1016/J.ECOENV.2019.109900
Volume/pages
188 (2020) , 10 p.
Article Reference
109900
ISI
000503913900015
Pubmed ID
31710868
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Aquatic systems under multiple stress: a new paradigm for integration aquaculture and ecotoxicology research.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 12.11.2019
Last edited 28.11.2024
To cite this reference