Publication
Title
Investigating the effects of a sub-lethal metal mixture of Cu, Zn and Cd on bioaccumulation and ionoregulation in common carp, *Cyprinus carpio*
Author
Abstract
The aquatic environment is continuously under threat because it is the final receptor and sink of waste streams. The development of industry, mining activities and agriculture gave rise to an increase in metal pollution in the aquatic system. Thus a wide occurrence of metal mixtures exists in the aquatic environment. The assessment of mixture stress remains a challenge considering that we can not predict the toxicity of a mixture on the basis of single compounds. Therefore the analysis of the effects of environmentally relevant waterborne mixtures is needed to improve our understanding of the impact of metal pollution in aquatic ecosystems. Our aim was to assess whether 10 % of the concentration of the 96 h LC50 (the concentration that is lethal to 50 % of the population in 96 h) of individual metal exposures can be considered as a “safe” concentration when applied in a trinomial mixture. Therefore, common carp were exposed to a sublethal mixture of Cu 0.07 ± 0.001 μM (4.3 ± 0.6 μg/L), Zn 2.71 ± 0.81 μM (176.9 ± 52.8 μg/L) and Cd 0.03 ± 0.0004 μM (3.0 ± 0.4 μg/L) at 20 °C for a period of one week. Parameters assessed included survival rate, bioaccumulation and physiological biomarkers related to ionoregulation and defensive mechanisms such as MT induction. Our results showed a sharp increase in Cu and Cd concentration in gills within the first day of exposure while Zn levels remained stable. The accumulation of these metals led to a Na drop in gills, liver and muscle as well as a decreased K content in the liver. Biomarkers related to Na uptake were also affected: on the first day gene expression for H+-ATPase was transiently increased while a concomitant decreased gene expression of the Na+/H+ exchanger occurred. A fivefold induction of metallothionein gene expression was reported during the entire duration of the experiment. Despite the adverse effects on ionoregulation all fish survived, indicating that common carp are able to cope with these low metal concentrations, at least during a one week exposure.
Language
English
Source (journal)
Aquatic toxicology. - Amsterdam
Publication
Amsterdam : 2020
ISSN
0166-445X
DOI
10.1016/J.AQUATOX.2019.105363
Volume/pages
218 (2020) , 10 p.
Article Reference
105363
ISI
000509631400008
Pubmed ID
31783302
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Adaptive responses of an aquatic vertebrate to chemical pollution.
Mixed metal and temperature stress in aquatic environments establishing functional links across different levels of organisation.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 26.11.2019
Last edited 28.11.2024
To cite this reference