Publication
Title
A complementary dual-modality verification for tumor tracking on a gimbaled linac system
Author
Abstract
Background and purpose: For dynamic tracking of moving tumors, robust intra-fraction verification was required, to assure that tumor motion was properly managed during the course of radiotherapy. A dual-modality verification system, consisting of an on-board orthogonal kV and planar MV imaging device, was validated and applied retrospectively to patient data. Methods and materials: Real-time tumor tracking (RTTT) was managed by applying PAN and TILT angular corrections to the therapeutic beam using a gimbaled linac. In this study, orthogonal X-ray imaging and MV EPID fluoroscopy was acquired simultaneously. The tracking beam position was derived from respectively real-time gimbals log files and the detected field outline on EPID. For both imaging modalities, the moving target was localized by detection of an implanted fiducial. The dual-modality tracking verification was validated against a high-precision optical camera in phantom experiments and applied to clinical tracking data from a liver and two lung cancer patients. Results: Both verification modalities showed a high accuracy (<0.3 mm) during validation on phantom. Marker detection on EPID was influenced by low image contrast. For the clinical cases, gimbaled tracking showed a 90th percentile error (E90) of 3.45 (liver), 2.44 (lung A) and 3.40 mm (lung B) based on EPID fluoroscopy and good agreement with XR-log file data by an E90 of 3.13, 1.92 and 3.33 mm, respectively, during beam on. Conclusion: Dual-modality verification was successfully implemented, offering the possibility of detailed reporting on RTTT performance. (C) 2013 Elsevier Ireland Ltd. All rights reserved.
Language
English
Source (journal)
Radiotherapy and oncology. - Amsterdam
Publication
Amsterdam : 2013
ISSN
0167-8140
DOI
10.1016/J.RADONC.2013.10.005
Volume/pages
109 :3 (2013) , p. 469-474
ISI
000329482000026
Full text (Publisher's DOI)
UAntwerpen
Publication type
Subject
External links
Web of Science
Record
Identifier
Creation 04.12.2019
Last edited 20.08.2024
To cite this reference