Publication
Title
mRNA Interactome Capture from Plant Protoplasts
Author
Abstract
RNA-binding proteins (RBPs) determine the fates of RNAs. They participate in all RNA biogenesis pathways and especially contribute to post-transcriptional gene regulation (PTGR) of messenger RNAs (mRNAs). In the past few years, a number of mRNA-bound proteomes from yeast and mammalian cell lines have been successfully isolated through the use of a novel method called "mRNA interactome capture," which allows for the identification of mRNA-binding proteins (mRBPs) directly from a physiological environment. The method is composed of in vivo ultraviolet (UV) crosslinking, pull-down and purification of messenger ribonucleoprotein complexes (mRNPs) by oligo(dT) beads, and the subsequent identification of the crosslinked proteins by mass spectrometry (MS). Very recently, by applying the same method, several plant mRNA-bound proteomes have been reported simultaneously from different Arabidopsis tissue sources: etiolated seedlings, leaf tissue, leaf mesophyll protoplasts, and cultured root cells. Here, we present the optimized mRNA interactome capture method for Arabidopsis thaliana leaf mesophyll protoplasts, a cell type that serves as a versatile tool for experiments that include various cellular assays. The conditions for optimal protein yield include the amount of starting tissue and the duration of UV irradiation. In the mRNA-bound proteome obtained from a medium-scale experiment (107 cells), RBPs noted to have RNA-binding capacity were found to be overrepresented, and many novel RBPs were identified. The experiment can be scaled up (109 cells), and the optimized method can be applied to other plant cell types and species to broadly isolate, catalog, and compare mRNA-bound proteomes in plants.
Language
English
Source (journal)
JoVe
Publication
2017
DOI
10.3791/56011
Volume/pages
125 (2017)
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Publication type
Subject
External links
Record
Identifier
Creation 06.12.2019
Last edited 04.03.2024
To cite this reference