Publication
Title
A metabolite-based machine learning approach to diagnose Alzheimer-type dementia in blood : results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort
Author
Abstract
Introduction Machine learning (ML) may harbor the potential to capture the metabolic complexity in Alzheimer Disease (AD). Here we set out to test the performance of metabolites in blood to categorize AD when compared to CSF biomarkers. Methods This study analyzed samples from 242 cognitively normal (CN) people and 115 with AD-type dementia utilizing plasma metabolites (n = 883). Deep Learning (DL), Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were used to differentiate AD from CN. These models were internally validated using Nested Cross Validation (NCV). Results On the test data, DL produced the AUC of 0.85 (0.80–0.89), XGBoost produced 0.88 (0.86–0.89) and RF produced 0.85 (0.83–0.87). By comparison, CSF measures of amyloid, p-tau and t-tau (together with age and gender) produced with XGBoost the AUC values of 0.78, 0.83 and 0.87, respectively. Discussion This study showed that plasma metabolites have the potential to match the AUC of well-established AD CSF biomarkers in a relatively small cohort. Further studies in independent cohorts are needed to validate whether this specific panel of blood metabolites can separate AD from controls, and how specific it is for AD as compared with other neurodegenerative disorders.
Language
English
Source (journal)
Alzheimer's & dementia : translational research & clinical interventions. - -
Publication
2019
ISSN
2352-8737
DOI
10.1016/J.TRCI.2019.11.001
Volume/pages
5 (2019) , p. 933-938
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Record
Identifier
Creation 06.01.2020
Last edited 07.10.2022
To cite this reference