Publication
Title
The RXFP3 receotor is functionally associated with cellular responses to oxidative stress and DNA damage
Author
Abstract
DNA damage response (DDR) processes, often caused by oxidative stress, are important in aging and -related disorders. We recently showed that G protein-coupled receptor (GPCR) kinase interacting protein 2 (GIT2) plays a key role in both DNA damage and oxidative stress. Multiple tissue analyses in GIT2KO mice demonstrated that GIT2 expression affects the GPCR relaxin family peptide 3 receptor (RXFP3), and is thus a therapeutically-targetable system. RXFP3 and GIT2 play similar roles in metabolic aging processes. Gaining a detailed understanding of the RXFP3-GIT2 functional relationship could aid the development of novel anti-aging therapies. We determined the connection between RXFP3 and GIT2 by investigating the role of RXFP3 in oxidative stress and DDR. Analyzing the effects of oxidizing (H2O2) and DNA-damaging (camptothecin) stressors on the interacting partners of RXFP3 using Affinity Purification-Mass Spectrometry, we found multiple proteins linked to DDR and cell cycle control. RXFP3 expression increased in response to DNA damage, overexpression, and Relaxin 3-mediated stimulation of RXFP3 reduced phosphorylation of DNA damage marker H2AX, and repair protein BRCA1, moderating DNA damage. Our data suggests an RXFP3-GIT2 system that could regulate cellular degradation after DNA damage, and could be a novel mechanism for mitigating the rate of age-related damage accumulation.
Language
English
Source (journal)
Aging (Albany NY)
Publication
2019
ISSN
1945-4589
DOI
10.18632/AGING.102528
Volume/pages
11 :23 (2019) , p. 11268-11313
ISI
000503237600033
Pubmed ID
31794429
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Arterial stiffening as a common pathophysiological mechanism in cardiac and kidney failure and brain degeneration.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 08.01.2020
Last edited 25.11.2024
To cite this reference