Publication
Title
Alternative derivation of Mie theory with electromagnetic potentials for diffuse particles
Author
Abstract
Mie's theory of light scattering on spherical particles is being increasingly used in nanophotonics, and these demanding applications have laid bare some shortcomings of Mie theory in its standard formulation. One problem that deserves special attention is the electron spill-out in small metallic nanoparticles, which invalidates the assumption of an abrupt interface. Here we present an alternative derivation of Mie theory without this assumption. To avoid the usual electromagnetic boundary conditions suitable for a hard-wall interface, we set up equations for the electromagnetic potentials instead of the electric and magnetic field. We show that in the limit of a hard-wall interface, the results of the standard Mie theory are recovered. Additionally, a numerical solution scheme is proposed for the equations for the vector potential and the scalar potential. Analysis of the optical cross sections of soft-interface nanospheres shows that the absorption increases and occurs at lower frequencies as compared to hard-walled nanospheres. This effect is rather dramatic in large spheres with large spill-out, due to the disappearance of high-frequency resonance peaks.
Language
English
Source (journal)
Physical review B / American Physical Society. - New York, N.Y, 2016, currens
Publication
New York, N.Y : American Physical Society , 2019
ISSN
2469-9969 [online]
2469-9950 [print]
DOI
10.1103/PHYSREVB.100.235409
Volume/pages
100 :23 (2019) , 10 p.
Article Reference
235409
ISI
000501347400008
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Quantum turbulence in atomic and solid state Bose-Einstein condensates.
Quantum simulation of polaronic effects in quantum gases.
Nonlinear Transport of the Wigner Solid on a Superfluid 4He in a Quasi-One- Dimensional Channel.
Superfluidity and superconductivity in multicomponent quantum condensates.
Modelling of thermo-optical properties of hydrogen at extreme pressures.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 08.01.2020
Last edited 12.11.2024
To cite this reference