Publication
Title
Towards a generic optimal co-design of hardware architecture and control configuration for interacting subsystems
Author
Abstract
In plants consisting of multiple interacting subsystems, the decision on how to optimally select and place actuators and sensors and the accompanying question on how to control the overall plant is a challenging task. Since there is no theoretical framework describing the impact of sensor and actuator placement on performance, an optimization method exploring the possible configurations is introduced in this paper to find a trade-off between implementation cost and achievable performance. Moreover, a novel model-based procedure is presented to simultaneously co-design the optimal number, type and location of actuators and sensors and to determine the corresponding optimal control architecture and accompanying control parameters. This paper adds the optimization of the control architecture to the current state-of-the-art. As an optimization output, a Pareto front is presented, providing insights on the optimal total plant performance related to the hardware and control design implementation cost. The proposed algorithm is not focused on one particular application or a specific optimization problem, but is instead a generally applicable method and can be applied to a wide range of applications (e.g., mechatronic, electrical, thermal). In this paper, the co-design approach is validated on a mechanical setup.
Language
English
Source (journal)
Mechatronics. - Oxford
Publication
Oxford : 2019
ISSN
0957-4158
DOI
10.1016/J.MECHATRONICS.2019.102275
Volume/pages
63 (2019) , 14 p.
Article Reference
102275
ISI
000500035900008
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 08.01.2020
Last edited 02.10.2024
To cite this reference