Publication
Title
Locating and controlling the Zn content in In(Zn)P quantum dots
Author
Abstract
Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties of the QDs are debated. We use synchrotron X-ray absorbance spectroscopy to show that the majority of Zn in In(Zn)P QDs is located at their surface as Zn carboxylates. However, a small amount of Zn is present inside the bulk of the QDs with the consequent contraction of their lattice, as confirmed by combining high-resolution high-angle annular dark-field imaging scanning transmission electron microscopy with statistical parameter estimation theory. We further demonstrate that the Zn content and its incorporation into the QDs can be tuned by the ligation of commonly employed Zn carboxylate precursors: the use of highly reactive Zn acetate leads to the formation of undesired Zn3P2 and the final nanostructures being characterized by broad optical features, whereas Zn carboxylates with longer carbon chains lead to InP crystals with much lower zinc content and narrow optical features. These results can explain the differences between structural and optical properties of In(Zn)P samples reported across the literature and provide a rational method to tune the amount of Zn in InP nanocrystals and to drive the incorporation of Zn either as surface Zn carboxylate, as a substitutional dopant inside the InP crystal lattice, or even predominantly as Zn3P2.
Language
English
Source (journal)
Chemistry of materials / American Chemical Society. - Washington, D.C., 1989, currens
Publication
Washington, D.C. : 2020
ISSN
0897-4756 [print]
1520-5002 [online]
DOI
10.1021/ACS.CHEMMATER.9B04407
Volume/pages
32 :1 (2020) , p. 557-565
ISI
000507721600056
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Confidential
3D Structure of nanomaterials under realistic conditions (REALNANO).
Spectral electron tomography as a quantitative technique to investigate functional nanomaterials.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 10.01.2020
Last edited 02.10.2024
To cite this reference