Publication
Title
Global attraction of ODE-based mean field models with hyperexponential job sizes
Author
Abstract
Mean field modeling is a popular approach to assess the performance of large scale computer systems. The evolution of many mean field models is characterized by a set of ordinary differential equations that have a unique fixed point. In order to prove that this unique fixed point corresponds to the limit of the stationary measures of the finite systems, the unique fixed point must be a global attractor. While global attraction was established for various systems in case of exponential job sizes, it is often unclear whether these proof techniques can be generalized to non-exponential job sizes. In this paper we show how simple monotonicity arguments can be used to prove global attraction for a broad class of ordinary differential equations that capture the evolution of mean field models with hyperexponential job sizes. This class includes both existing as well as previously unstudied load balancing schemes and can be used for systems with either finite or infinite buffers. The main novelty of the approach exists in using a Coxian representation for the hyperexponential job sizes and a partial order that is stronger than the componentwise partial order used in the exponential case.
Language
English
Source (journal)
Proceedings of the ACM on Measurement and Analysis of Computing Systems
Publication
2019
DOI
10.1145/3341617.3326137
Volume/pages
3 :2 (2019) , 23 p.
Article Reference
23
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Record
Identifier
Creation 23.01.2020
Last edited 07.10.2022
To cite this reference