Publication
Title
Plasma-enabled catalyst-free conversion of ethanol to hydrogen gas and carbon dots near room temperature
Author
Abstract
Selective conversion of bio-renewable ethanol under mild conditions especially at room temperature remains a major challenge for sustainable production of hydrogen and valuable carbon-based materials. In this study, adaptive non-thermal plasma is applied to deliver pulsed energy to rapidly and selectively reform ethanol in the absence of a catalyst. Importantly, the carbon atoms in ethanol that would otherwise be released into the environment in the form of CO or CO2 are effectively captured in the form of carbon dots (CDs). Three modes of non-thermal spark plasma discharges, i.e. single spark mode (SSM), multiple spark mode (MSM) and gliding spark mode (GSM), provide additional flexibility in ethanol reforming by controlling the processes of energy transfer and distribution, thereby affecting the flow rate, gas content, and energy consumption in H-2 production. A favourable combination of low temperature (< 40 degrees C), attractive conversion rate (gas flow rate of similar to 120 mL/min), high hydrogen yield (H-2 content > 90%), low energy consumption (similar to 0.96 kWh/m(3) H-2) and the effective generation of photoluminescent CDs (which are applicable for bioimaging or biolabelling) in the MSM indicate that the proposed strategy may offer a new carbon-negative avenue for comprehensive utilization of alcohols and mitigating the increasingly severe energy and environmental issues.
Language
English
Source (journal)
Chemical engineering journal. - Lausanne, 1996, currens
Publication
Lausanne : Elsevier Sequoia , 2020
ISSN
1385-8947 [print]
1873-3212 [online]
DOI
10.1016/J.CEJ.2019.122745
Volume/pages
382 (2020) , 9 p.
Article Reference
122745
ISI
000503381200200
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 05.02.2020
Last edited 29.11.2024
To cite this reference