Publication
Title
A cross‐system comparison of dark carbon fixation in coastal sediments
Author
Abstract
Dark carbon fixation (DCF) by chemoautotrophic microorganisms can sustain food webs in the seafloor by local production of organic matter independent of photosynthesis. The process has received considerable attention in deep sea systems, such as hydrothermal vents, but the regulation, depth distribution, and global importance of coastal sedimentary DCF have not been systematically investigated. Here we surveyed eight coastal sediments by means of stable isotope probing (13C‐DIC) combined with bacterial biomarkers (phospholipid‐derived fatty acids) and compiled additional rates from literature into a global database. DCF rates in coastal sediments range from 0.07 to 36.30 mmol C m−2 day−1, and there is a linear relation between DCF and water depth. The CO2 fixation ratio (DCF/CO2 respired) also shows a trend with water depth, decreasing from 0.09 in nearshore environments to 0.04 in continental shelf sediments. Five types of depth distributions of chemoautotrophic activity are identified based on the mode of pore water transport (advective, bioturbated, and diffusive) and the dominant pathway of microbial sulfur oxidation. Extrapolated to the global coastal ocean, we estimate a DCF rate of 0.04 to 0.06 Pg C year−1, which is less than previous estimates based on indirect measurements (0.15 Pg C year−1), but remains substantially higher than the global DCF rate at deep sea hydrothermal vents (0.001–0.002 Pg C year−1).
Language
English
Source (journal)
Global biogeochemical cycles. - Washington, D.C.
Publication
Washington, D.C. : 2020
ISSN
0886-6236 [print]
1944-9224 [online]
DOI
10.1029/2019GB006298
Volume/pages
34 :2 (2020) , 14 p.
Article Reference
e2019GB006298
ISI
000520158900011
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
SEDBIOGEOCHEM 2.0: Hardwiring the ocean floor: the impact of microbial electrical circuitry on biogeochemical cycling in marine sediments
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 25.02.2020
Last edited 02.12.2024
To cite this reference