Publication
Title
Circular quantum dots in twisted bilayer graphene
Author
Abstract
Within a tight-binding approach, we investigate the effect of twisting angle on the energy levels of circular bilayer graphene (BLG) quantum dots (QDs) in both the absence and presence of a perpendicular magnetic field. The QDs are defined by an infinite-mass potential, so that the specific edge effects are not present. In the absence of magnetic field (or when the magnetic length is larger than the moire length), we show that the low-energy states in twisted BLG QDs are completely affected by the formation of moire patterns, with a strong localization at AA-stacked regions. When magnetic field increases, the energy gap of an untwisted BLG QD closes with the edge states, localized at the boundaries between the AA- and AB-stacked spots in a twisted BLG QD. Our observation of the spatial localization of the electrons in twisted BLG QDs can be experimentally probed by low-bias scanning tunneling microscopy measurements.
Language
English
Source (journal)
Physical review B / American Physical Society. - New York, N.Y, 2016, currens
Publication
New York, N.Y : American Physical Society , 2020
ISSN
2469-9969 [online]
2469-9950 [print]
DOI
10.1103/PHYSREVB.101.075413
Volume/pages
101 :7 (2020) , 8 p.
Article Reference
075413
ISI
000512772200004
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 04.03.2020
Last edited 12.12.2024
To cite this reference