Title
|
|
|
|
Skyrmionic chains and lattices in s plus id superconductors
| |
Author
|
|
|
|
| |
Abstract
|
|
|
|
We report characteristic vortex configurations in s + id superconductors with time-reversal symmetry breaking, exposed to magnetic field. A vortex in the s + id state tends to have an opposite phase winding between s- and d-wave condensates. We find that this peculiar feature together with the competition between s- and d-wave symmetry results in three distinct classes of vortical configurations. When either s or d condensate absolutely dominates, vortices form a conventional lattice. However, when one condensate is relatively dominant, vortices organize in chains that exhibit skyrmionic character, separating the chiral components of the s +/- id order parameter into domains within and outside the chain. Such skyrmionic chains are found stable even at high magnetic field. When s and d condensates have comparable strength, vortices split cores in two chiral components to form full-fledged skyrmions, i.e., coreless topological structures with an integer topological charge, organized in a lattice. We provide characteristic magnetic field distributions of all states, enabling their identification in, e.g., scanning Hall probe and scanning SQUID experiments. These unique vortex states are relevant for high-T-c cuprate and iron-based superconductors, where the relative strength of competing pairing symmetries is expected to be tuned by temperature and/or doping level, and can help distinguish s + is and s + id superconducting phases. |
| |
Language
|
|
|
|
English
| |
Source (journal)
|
|
|
|
Physical review B / American Physical Society. - New York, N.Y, 2016, currens
| |
Publication
|
|
|
|
New York, N.Y
:
American Physical Society
,
2020
| |
ISSN
|
|
|
|
2469-9969
[online]
2469-9950
[print]
| |
DOI
|
|
|
|
10.1103/PHYSREVB.101.064501
| |
Volume/pages
|
|
|
|
101
:6
(2020)
, 13 p.
| |
Article Reference
|
|
|
|
064501
| |
ISI
|
|
|
|
000510745600005
| |
Medium
|
|
|
|
E-only publicatie
| |
Full text (Publisher's DOI)
|
|
|
|
| |
Full text (open access)
|
|
|
|
| |
|