Publication
Title
Right ventricular strain rate during exercise accurately identifies male athletes with right ventricular arrhythmias
Author
Abstract
Aims Athletes with right ventricular (RV) arrhythmias, even in the absence of desmosomal mutations, may have subtle RV abnormalities which can be unmasked by deformation imaging. As exercise places a disproportionate stress on the right ventricle, evaluation of cardiac function and deformation during exercise might improve diagnostic performance. Methods and results We performed bicycle stress echocardiography in 17 apparently healthy endurance athletes (EAs), 12 non-athletic controls (NAs), and 17 athletes with RV arrhythmias without desmosomal mutations (EI-ARVCs) and compared biventricular function at rest and during low (25% of upright peak power) and moderate intensity (60%). At rest, we observed no differences in left ventricular (LV) or RV function between groups. During exercise, however, the increase in RV fractional area change (RVFAC), RV free wall strain (RVFWSL), and strain rate (RVFWSRL) were significantly attenuated in EI-ARVCs as compared to EAs and NAs. At moderate exercise intensity, EI-ARVCs had a lower RVFAC, RVFWSL, and RVFWSRL (all P < 0.01) compared to the control groups. Exercise-related increases in LV ejection fraction, strain, and strain rate were also attenuated in EI-ARVCs (P < 0.05 for interaction). Exercise but not resting parameters identified EI-ARVCs and RVFWSRL with a cut-off value of >−2.35 at moderate exercise intensity had the greatest accuracy to detect EI-ARVCs (area under the curve 0.95). Conclusion Exercise deformation imaging holds promise as a non-invasive diagnostic tool to identify intrinsic RV dysfunction concealed at rest. Strain rate appears to be the most accurate parameter and should be incorporated in future, prospective studies to identify subclinical disease in an early stage.
Language
English
Source (journal)
European heart journal : cardiovascular Imaging. - Oxford, 2012, currens
Publication
Oxford : Oxford university Press , 2020
ISSN
2047-2404
2047-2412
DOI
10.1093/EHJCI/JEZ228
Volume/pages
21 :3 (2020) , p. 282-290
Article Reference
jez228
ISI
000529823300011
Pubmed ID
31578557
Medium
E-only publicatie
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Project info
Infla-Med: Fundamental and translational research into targets for the treatment of inflammatory diseases.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 09.04.2020
Last edited 02.10.2024
To cite this reference