Publication
Title
Adaptive evolution of industrial Brewer's yeast strains towards a snowflake phenotype
Author
Abstract
Flocculation or cell aggregation is a well-appreciated characteristic of industrial brewer's strains, since it allows removal of the cells from the beer in a cost-efficient and environmentally-friendly manner. However, many industrial strains are non-flocculent and genetic interference to increase the flocculation characteristics are not appreciated by the consumers. We applied adaptive laboratory evolution (ALE) to three non-flocculent, industrial Saccharomyces cerevisiae brewer's strains using small continuous bioreactors (ministats) to obtain an aggregative phenotype, i.e., the "snowflake" phenotype. These aggregates could increase yeast sedimentation considerably. We evaluated the performance of these evolved strains and their produced flavor during lab scale beer fermentations. The small aggregates did not result in a premature sedimentation during the fermentation and did not result in major flavor changes of the produced beer. These results show that ALE could be used to increase the sedimentation behavior of non-flocculent brewer's strains.
Language
English
Source (journal)
Fermentation. - [S.l.]
Publication
[S.l.] : MDPI AG , 2020
ISSN
2311-5637
DOI
10.3390/FERMENTATION6010020
Volume/pages
6 :1 (2020) , p. 1-9
Article Reference
20
ISI
000523658500013
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 05.05.2020
Last edited 02.10.2024
To cite this reference