Publication
Title
Transition metal dichalcogenides as strategy for high temperature electron-hole superfluidity
Author
Abstract
Condensation of spatially indirect excitons, with the electrons and holes confined in two separate layers, has recently been observed in two different double layer heterostructures. High transition temperatures were reported in a double Transition Metal Dichalcogenide (TMD) monolayer system. We briefly review electron-hole double layer systems that have been proposed as candidates for this interesting phenomenon. We investigate the double TMD system WSe2/hBN/MoSe2, using a mean-field approach that includes multiband effects due to the spin-orbit coupling and self-consistent screening of the electron-hole Coulomb interaction. We demonstrate that the transition temperature observed in the double TMD monolayers, which is remarkably high relative to the other systems, is the result of (i) the large electron and hole effective masses in TMDs, (ii) the large TMD band gaps, and (iii) the presence of multiple superfluid condensates in the TMD system. The net effect is that the superfluidity is strong across a wide range of densities, which leads to high transition temperatures that extend as high as TBKT=150 K.
Language
English
Source (journal)
Condensed Matter. - [S.l.]
Publication
[S.l.] : MDPI AG , 2020
ISSN
2410-3896
DOI
10.3390/CONDMAT5010022
Volume/pages
5 :1 (2020) , p. 1-12
Article Reference
22
ISI
000523711200017
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Theoretical investigation of electronic transport in functionalized 2D transition metal dichalcogenides (Trans2DTMD).
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 05.05.2020
Last edited 28.08.2024
To cite this reference