Publication
Title
Double moiré with a twist : supermoiré in encapsulated graphene
Author
Abstract
A periodic spatial modulation, as created by a moire pattern, has been extensively studied with the view to engineer and tune the properties of graphene. Graphene encapsulated by hexagonal boron nitride (hBN) when slightly misaligned with the top and bottom hBN layers experiences two interfering moire patterns, resulting in a so-called supermoire (SM). This leads to a lattice and electronic spectrum reconstruction. A geometrical construction of the nonrelaxed SM patterns allows us to indicate qualitatively the induced changes in the electronic properties and to locate the SM features in the density of states and in the conductivity. To emphasize the effect of lattice relaxation, we report band gaps at all Dirac-like points in the hole doped part of the reconstructed spectrum, which are expected to be enhanced when including interaction effects. Our result is able to distinguish effects due to lattice relaxation and due to the interfering SM and provides a clear picture on the origin of recently experimentally observed effects in such trilayer heterostuctures.
Language
English
Source (journal)
Nano letters / American Chemical Society. - Washington
Publication
Washington : 2020
ISSN
1530-6984
DOI
10.1021/ACS.NANOLETT.9B04058
ISI
000514255400021
Pubmed ID
31961161
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Theoretical investigation of electronic transport in functionalized 2D transition metal dichalcogenides (Trans2DTMD).
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 05.05.2020
Last edited 02.10.2024
To cite this reference