Publication
Title
The magnetic, electronic, and light-induced topological properties in two-dimensional hexagonal FeX₂ (X=Cl, Br, I) monolayers
Author
Abstract
Using Floquet-Bloch theory, we propose to realize chiral topological phases in two-dimensional (2D) hexagonal FeX2 (X=Cl, Br, I) monolayers under irradiation of circularly polarized light. Such 2D FeX2 monolayers are predicted to be dynamically stable and exhibit both ferromagnetic and semiconducting properties. To capture the full topological physics of the magnetic semiconductor under periodic driving, we adopt ab initio Wannier-based tight-binding methods for the Floquet-Bloch bands, with the light-induced bandgap closings and openings being obtained as the light field strength increases. The calculations of slabs with open boundaries show the existence of chiral edge states. Interestingly, the topological transitions with branches of chiral edge states changing from zero to one and from one to two by tuning the light amplitude are obtained, showing that the topological Floquet phase of high Chern number can be induced in the present Floquet-Bloch systems. Published under license by AIP Publishing.
Language
English
Source (journal)
Applied physics letters / American Institute of Physics. - New York, N.Y., 1962, currens
Publication
New York, N.Y. : American Institute of Physics , 2020
ISSN
0003-6951 [print]
1077-3118 [online]
DOI
10.1063/5.0006446
Volume/pages
116 :19 (2020) , p. 1-5
Article Reference
192404
ISI
000533500900001
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Theoretical investigation of electronic transport in functionalized 2D transition metal dichalcogenides (Trans2DTMD).
CalcUA as central calculation facility: supporting core facilities.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 05.06.2020
Last edited 02.12.2024
To cite this reference