Publication
Title
Fully biobased epoxy resins from fatty acids and lignin
Author
Abstract
The use of renewable resources for plastic production is an imperious need for the reduction of the carbon footprint and the transition towards a circular economy. With that goal in mind, fully biobased epoxy resins have been designed and prepared by combining epoxidized linseed oil, lignin, and a biobased diamine derived from fatty acid dimers. The aromatic structures in lignin provide hardness and strength to an otherwise flexible and breakable epoxy resin. The curing of the system was investigated by infrared spectroscopy and differential scanning calorimetry (DSC). The influence of the different components on the thermo-mechanical properties of the epoxy resins was analyzed by DSC, thermal gravimetric analysis (TGA), and tensile tests. As the content of lignin in the resin increases, so does the glass transition, the Young's modulus, and the onset of thermal degradation. This correlation is non-linear, and the higher the percentage of lignin, the more pronounced the effect. All the components of the epoxy resin being commodity chemicals, the present system provides a realistic opportunity for the preparation of fully biorenewable resins at an industrial scale.
Language
English
Source (journal)
Molecules: a journal of synthetic chemistry and natural product chemistry. - Bazel
Publication
Bazel : 2020
ISSN
1420-3049
DOI
10.3390/MOLECULES25051158
Volume/pages
25 :5 (2020) , p. 1-11
Article Reference
1158
ISI
000529219900141
Pubmed ID
32150811
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 05.06.2020
Last edited 02.10.2024
To cite this reference