Publication
Title
Doping-dependent switch from one- to two-component superfluidity in coupled electron-hole van der Waals heterostructures
Author
Abstract
The hunt for high-temperature superfluidity has received new impetus from the discovery of atomically thin stable materials. Electron-hole superfluidity in coupled MoSe2-WSe2 monolayers is investigated using a mean-field multiband model that includes band splitting caused by strong spin-orbit coupling. This splitting leads to a large energy misalignment of the electron and hole bands which is strongly modified by interchanging the doping of the monolayers. The choice of doping determines if the superfluidity is tunable from one to two components.
Language
English
Source (journal)
Physical review B / American Physical Society. - New York, N.Y, 2016, currens
Publication
New York, N.Y : American Physical Society , 2020
ISSN
2469-9969 [online]
2469-9950 [print]
DOI
10.1103/PHYSREVB.101.220504
Volume/pages
101 :22 (2020) , p. 1-6
Article Reference
220504
ISI
000538941900002
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Theoretical investigation of electronic transport in functionalized 2D transition metal dichalcogenides (Trans2DTMD).
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 17.07.2020
Last edited 02.10.2024
To cite this reference