Publication
Title
Application of conventional mathematical and soft computing models for determining the effects of extended aging on rutting properties of asphalt mixtures
Author
Abstract
Pavement performance prediction is a mounting task due to the many varied influencing factors particularly aging which varies with time, weather, production, type of pavement and etc. This paper presents a conventional mathematical model named Superpave model, Artificial Neural Network (ANN), and Supporting Vector Machine (SVM) techniques to predict the effects of extended aging on asphalt mixture performance measured in terms of rutting properties determined from the dynamic creep test. The accuracy of each method was compared to select the most reliable technique that can be used to forecast the rutting behavior of asphalt mixtures subjected to different aging conditions. The results indicated that the Superpave model was only reliable at lower temperatures, while ANN and SVM techniques showed the capability of precise prediction under all conditions. The overall results showed that the ANN was the most promising technique that can be adopted to satisfactorily forecast the effects of aging on rutting properties of all mixtures. The developed model can be embraced by the pavement management sector for more precise estimation of the pavement life cycle subjected to different aging conditions which can be used to design efficient pavement maintenance and rehabilitation plans.
Language
English
Source (journal)
International Journal of Transportation Engineering / Tarrahan Parseh Transportation Research Institute
Publication
Tarrahan Parseh Transportation Research Institute , 2021
ISSN
2322-259X
2538-3728
DOI
10.22119/IJTE.2020.208779.1500
Volume/pages
8 :3 (2021) , p. 247-260
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Record
Identifier
Creation 12.10.2020
Last edited 07.10.2022
To cite this reference