Publication
Title
What drives phenological synchrony? Warm springs advance and desynchronize flowering in oaks
Author
Abstract
Annually variable and synchronous seed production, or masting, is often correlated with environmental factors and in oaks involves differential pollination success that depends on phenological synchrony in flowering. The synchronization of phenology of flowering was thought to be driven by temperature during flowering (microclimatic hypothesis). We tested an alternative, whereby phenological synchronization is driven by the timing of the onset of flowering (photoperiod-sensitivity hypothesis). This hypothesis assumes that flowering synchrony is driven by interaction between daylength and temperature, and individual variation in sensitivity to daylength as a phenological cue. We used long-term (23-26 years) records of airborne pollen in Quercus robur, Q. petraea, Q. ilex, and Q. humilis. Late pollen seasons were short, as predicted by photoperiod-sensitivity hypothesis. The onset of pollen seasons was delayed as preseason temperatures cooled over the last three decades at our Mediterranean sites, which was paralleled by shortening in pollen seasons, providing additional support for the photoperiod-sensitivity hypothesis. Global warming under the microclimatic hypothesis is predicted to lead to less frequent reproductive failures and thus decreased variability and synchrony of mast seeding. In contrast, warming under the photoperiod-sensitivity hypothesis should advance the onset of and desynchronize flowering, a pattern supported by our data. This pattern suggests that global warming will lead to more frequent vetoes and more stochastic and variable patterns of oak reproduction.
Language
English
Source (journal)
Agricultural and forest meteorology. - Amsterdam
Publication
Amsterdam : 2020
ISSN
0168-1923
DOI
10.1016/J.AGRFORMET.2020.108140
Volume/pages
294 (2020) , 7 p.
Article Reference
108140
ISI
000566373700009
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Effects of phosphorus limitations on Life, Earth system and Society (IMBALANCE-P).
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 19.10.2020
Last edited 04.12.2024
To cite this reference