Publication
Title
Oxygen vacancies in the single layer of Ti₂CO₂ MXene: effects of gating voltage, mechanical strain, and atomic impurities
Author
Abstract
Herein, using first-principles calculations the structural and electronic properties of the Ti(2)CO(2)MXene monolayer with and without oxygen vacancies are systematically investigated with different defect concentrations and patterns, including partial, linear, local, and hexagonal types. The Ti(2)CO(2)monolayer is found to be a semiconductor with a bandgap of 0.35 eV. The introduction of oxygen vacancies tends to increase the bandgap and leads to electronic phase transitions from nonmagnetic semiconductors to half-metals. Moreover, the semiconducting characteristic of O-vacancy Ti(2)CO(2)can be adjusted via electric fields, strain, and F-atom substitution. In particular, an electric field can be used to alter the nonmagnetic semiconductor of O-vacancy Ti(2)CO(2)into a magnetic one or into a half-metal, whereas the electronic phase transition from a semiconductor to metal can be achieved by applying strain and F-atom substitution. The results provide a useful guide for practical applications of O-vacancy Ti(2)CO(2)monolayers in nanoelectronic and spinstronic nanodevices.
Language
English
Source (journal)
Physica status solidi: B: basic research. - Berlin
Publication
Weinheim : Wiley-v c h verlag gmbh , 2020
ISSN
0370-1972
DOI
10.1002/PSSB.202000343
Volume/pages
p. 1-9
Article Reference
2000343
ISI
000571060800001
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 19.10.2020
Last edited 07.12.2024
To cite this reference