Publication
Title
Insights into water permeation through hBN nanocapillaries by ab initio machine learning molecular dynamics simulations
Author
Abstract
Water permeation between stacked layers of hBN sheets forming 2D nanochannels is investigated using large-scale ab initio-quality molecular dynamics simulations. A high-dimensional neural network potential trained on density-functional theory calculations is employed. We simulate water in van der Waals nanocapillaries and study the impact of nanometric confinement on the structure and dynamics of water using both equilibrium and nonequilibrium methods. At an interlayer distance of 10.2 A confinement induces a first-order phase transition resulting in a well-defined AA-stacked bilayer of hexagonal ice. In contrast, for h < 9 A, the 2D water monolayer consists of a mixture of different locally ordered patterns of squares, pentagons, and hexagons. We found a significant change in the transport properties of confined water, particularly for monolayer water where the water-solid friction coefficient decreases to half and the diffusion coefficient increases by a factor of 4 as compared to bulk water. Accordingly, the slip-velocity is found to increase under confinement and we found that the overall permeation is dominated by monolayer water adjacent to the hBN membranes at extreme confinements. We conclude that monolayer water in addition to bilayer ice has a major contribution to water transport through 2D nanochannels.
Language
English
Source (journal)
The journal of physical chemistry letters / American Chemical Society. - Washington, D.C, 2010, currens
Publication
Washington, D.C : American Chemical Society , 2020
ISSN
1948-7185
DOI
10.1021/ACS.JPCLETT.0C01739
Volume/pages
11 :17 (2020) , p. 7363-7370
ISI
000569375400061
Pubmed ID
32787306
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Atomic thin membranes for water and ion transport.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 19.10.2020
Last edited 12.12.2024
To cite this reference