Publication
Title
Metal-insulator transition of SrVO₃ ultrathin films embedded in SrVO₃/SrTiO₃ superlattices
Author
Abstract
The metal-insulator transition (MIT) in strongly correlated oxides is a topic of great interest for its potential applications, such as Mott field effect transistors and sensors. We report that the MIT in high quality epitaxial SrVO3 (SVO) thin films is present as the film thickness is reduced, lowering the dimensionality of the system, and electron-electron correlations start to become the dominant interactions. The critical thickness of 3 u.c is achieved by avoiding effects due to off-stoichiometry using optimal growth conditions and excluding any surface effects by a STO capping layer. Compared to the single SVO thin films, conductivity enhancement in SVO/STO superlattices is observed. This can be explained by the interlayer coupling effect between SVO sublayers in the superlattices. Magnetoresistance and Hall measurements indicate that the dominant driving force of MIT is the electron–electron interaction.
Language
English
Source (journal)
Applied physics letters / American Institute of Physics. - New York, N.Y., 1962, currens
Publication
New York, N.Y. : American Institute of Physics , 2020
ISSN
0003-6951 [print]
1077-3118 [online]
DOI
10.1063/5.0020615
Volume/pages
117 :13 (2020) , 5 p.
Article Reference
133105
ISI
000577126100001
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
SOLARPAINT: Understanding the durability of light sensitive materials: transferring insights between solar cell physics and the chemistry of paintings.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 26.10.2020
Last edited 07.12.2024
To cite this reference