Publication
Title
Optimization of thermal neutron shield concrete mixture using artificial neural network
Author
Abstract
Colemanite is the most convenient boron mineral which has been widely used in construction of radiation shielding concrete in order to improve the capture of thermal neutrons. But utilization of Colemanite in radiation shielding concrete has a deleterious effect on both physical and mechanical properties. In the present work, Taguchi method and artificial neural network (ANN) were employed to find an optimal mixture of Colemanite based concrete in order to improve the boron content of concrete and increase thermal neutron absorption without violating the standards for physical and mechanical properties. Using Taguchi method for experimental design, 27 concrete samples with different mixtures were fabricated and tested. Water/cement ratio, cement quantity, volume fraction of Colemanite aggregate and silica fume quantity were selected as control factors, and compressive strength, ultrasonic pulse velocity and thermal neutron transmission ratio were considered as the quality responses. Obtained data from 27 experiments were used to train 3 ANNs. Four control factors were utilized as the inputs of 3 ANNs and 3 quality responses were used as the outputs, separately (each ANN for one quality response). After training the ANNs, 1024 different mixtures with different quality responses were predicted. At the final, optimum mixture was obtained among the predicted different mixtures. Results demonstrated that the optimal mixture of thermal neutron shielding concrete has a water–cement ratio of 0.38, cement content of 400 kg/m3, a volume fraction Colemanite aggregate of 50% and silica fume–cement ratio of 0.15.
Language
English
Source (journal)
Nuclear engineering and design. - Amsterdam
Publication
Amsterdam : 2016
ISSN
0029-5493
DOI
10.1016/J.NUCENGDES.2016.05.012
Volume/pages
305 (2016) , p. 146-155
ISI
000383003400015
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Publication type
Subject
External links
Web of Science
Record
Identifier
Creation 30.10.2020
Last edited 24.08.2024
To cite this reference