Publication
Title
Interlayer dependence of G-modes in semiconducting double-walled carbon nanotubes
Author
Abstract
A double-walled carbon nanotube (DWNT), a coaxial composite of two single-walled carbon nanotubes (SWNT), provides a unique model to study interactions between the two constituent SWNTs. Combining high resolution transmission electron microscopy (HRTEM), electron diffraction (ED), and resonant Raman scattering (RRS) experiments on the same individual suspended DWNT is the ultimate way to relate unambiguously its atomic structure, defined by the chiral indices of the coaxial outer/inner SWNTs, and its Raman-active vibration modes. This approach is used to investigate the intertube distance dependence of the G-modes of individual index-identified DWNTs composed of two semiconducting SWNTs. We state the main features of the dependence of the G-mode frequencies on the distance between the inner and outer layers: (i) When the interlayer distance is larger than the nominal van der Waals distance (close to 0.34 nm), a downshift of the inner-layer G-modes with respect to the G-modes in the equivalent SWNTs is measured. (ii) The amplitude of the downshift depends on the interlayer distance, or in other words, on the negative pressure felt by the inner layer in DWNT. (iii) No shift is observed for an intertube distance close to 0.34 nm.
Language
English
Source (journal)
The journal of physical chemistry: C : nanomaterials and interfaces. - Washington, D.C., 2007, currens
Publication
Washington, D.C. : 2015
ISSN
1932-7447 [print]
1932-7455 [online]
DOI
10.1021/ACS.JPCC.5B05888
Volume/pages
119 :40 (2015) , p. 23196-23202
ISI
000362702100050
Full text (Publisher's DOI)
UAntwerpen
Project info
ESTEEM 2 - Enabling science and technology through European electron microscopy.
Publication type
Subject
External links
Web of Science
Record
Identifier
Creation 12.11.2020
Last edited 17.08.2024
To cite this reference