Publication
Title
Arc plasma reactor modification for enhancing performance of dry reforming of methane
Author
Abstract
Arc plasma technology is gaining increasing interest for a variety of chemical reaction applications. In this study, we demonstrate how modifying the reactor geometry can significantly enhance the chemical reaction performance. Using dry reforming of methane as a model reaction, we studied different rotating arc reactors (conventional rotating arc reactor and nozzle-type rotating arc reactor) to evaluate the effect of attaching a downstream nozzle. The nozzle structure focuses the heat to a confined reaction volume, resulting in enhanced heat transfer from the arc into gas activation and reduced heat losses to the reactor walls. Compared to the conventional rotating arc reactor, this yields much higher CH4 and CO2 conversion (i.e., 74% and 49%, respectively, versus 40% and 28% in the conventional reactor, at 5 kJ/L) as well as energy efficiency (i.e., 53% versus 36%). The different performance in both reactors was explained by both experiments (measurements of temperature and oscillogram of current and voltage) and numerical modelling of the gas flow dynamics, heat transfer and fluid plasma of the reactor chambers. The results provide important insights for design optimization of arc plasma reactors for various chemical reactions.
Language
English
Source (journal)
Journal of CO2 utilization. - -
Publication
2020
ISSN
2212-9820
DOI
10.1016/J.JCOU.2020.101352
Volume/pages
42 (2020) , 11 p.
Article Reference
101352
ISI
000599717000009
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 07.12.2020
Last edited 13.11.2024
To cite this reference