Publication
Title
Intrinsic electrical properties of cable bacteria reveal an Arrhenius temperature dependence
Author
Abstract
Filamentous cable bacteria exhibit long-range electron transport over centimetre-scale distances, which takes place in a parallel fibre structure with high electrical conductivity. Still, the underlying electron transport mechanism remains undisclosed. Here we determine the intrinsic electrical properties of the conductive fibres in cable bacteria from a material science perspective. Impedance spectroscopy provides an equivalent electrical circuit model, which demonstrates that dry cable bacteria filaments function as resistive biological wires. Temperature-dependent electrical characterization reveals that the conductivity can be described with an Arrhenius-type relation over a broad temperature range (- 195 degrees C to+50 degrees C), demonstrating that charge transport is thermally activated with a low activation energy of 40-50 meV. Furthermore, when cable bacterium filaments are utilized as the channel in a field-effect transistor, they show n-type transport suggesting that electrons are the charge carriers. Electron mobility values are similar to 0.1 cm(2)/Vs at room temperature and display a similar Arrhenius temperature dependence as conductivity. Overall, our results demonstrate that the intrinsic electrical properties of the conductive fibres in cable bacteria are comparable to synthetic organic semiconductor materials, and so they offer promising perspectives for both fundamental studies of biological electron transport as well as applications in microbial electrochemical technologies and bioelectronics.
Language
English
Source (journal)
Scientific reports. - London, 2011, currens
Publication
London : Nature Publishing Group , 2020
ISSN
2045-2322
DOI
10.1038/S41598-020-76671-5
Volume/pages
10 :1 (2020) , 8 p.
Article Reference
19798
ISI
000594647800006
Pubmed ID
33188289
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 05.01.2021
Last edited 08.12.2024
To cite this reference