Publication
Title
Fresh biochar application provokes a reduction of nitrate which is unexplained by conventional mechanisms
Author
Abstract
Soil-applied biochar has been reported to possess the potential to mitigate nitrate leaching and thus, exert beneficial effects beyond carbon sequestration. The main objective of the present study is to confirm if a pine gasification biochar that has proven able to decrease soil-soluble nitrate in previous research can indeed exert such an effect and to determine by which mechanism. For this purpose, lysimeters containing soil-biochar mixtures at 0, 12 and 50 t biochar ha(-1) were investigated in two different scenarios: a fresh biochar scenario consisting of fresh biochar and a fallow-managed soil, and an aged biochar scenario with a 6-yr naturally aged biochar in a crop-managed soil. Soil columns were assessed under a mimicked Mediterranean ambient within a greenhouse setting during an 8-mo period which included a barley crop cycle. A set of parameters related to nitrogen cycling, and particularly to mechanisms that could directly or indirectly explain nitrate content reduction (i.e., sorption, leaching, microbially-mediated processes, volatilisation, plant uptake, and ecotoxicological effects), were assessed. Specific measurements included soil solution and leachate ionic composition, microbial biomass and activity, greenhouse gas (GHG) emissions, N and O isotopic composition of nitrate, crop yield and quality, and ecotoxicological endpoints, among others. Nitrate content reduction in soil solution was verified for the fresh biochar scenario in both 12 and 50 t ha(-1) treatments and was coupled to a significant reduction of chloride, sodium, calcium and magnesium. This effect was noticed only after eight months of biochar application thus suggesting a time-dependent process. All other mechanisms tested being discarded, the formation of an organo-mineral coating emerges as a plausible explanation for the ionic content decrease. (C) 2020 Elsevier B.V. All rights reserved.
Language
English
Source (journal)
The science of the total environment. - Amsterdam, 1972, currens
Publication
Amsterdam : 2021
ISSN
0048-9697 [print]
1879-1026 [online]
DOI
10.1016/J.SCITOTENV.2020.142430
Volume/pages
755 :1 (2021) , 15 p.
Article Reference
142430
ISI
000600537400101
Pubmed ID
33011595
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 03.02.2021
Last edited 17.11.2024
To cite this reference