Publication
Title
Empirical support for the biogeochemical niche hypothesis in forest trees
Author
Abstract
The possibility of using the elemental compositions of species as a tool to identify species/genotype niche remains to be tested at a global scale. We investigated relationships between the foliar elemental compositions (elementomes) of trees at a global scale with phylogeny, climate, N deposition and soil traits. We analysed foliar N, P, K, Ca, Mg and S concentrations in 23,962 trees of 227 species. Shared ancestry explained 60-94% of the total variance in foliar nutrient concentrations and ratios whereas current climate, atmospheric N deposition and soil type together explained 1-7%, consistent with the biogeochemical niche hypothesis which predicts that each species will have a specific need for and use of each bio-element. The remaining variance was explained by the avoidance of nutritional competition with other species and natural variability within species. The biogeochemical niche hypothesis is thus able to quantify species-specific tree niches and their shifts in response to environmental changes. Based on a global-scale analysis of the leaf elemental composition of tree species, the authors show that shared ancestry is the major factor shaping plant elementomes, thus providing large-scale empirical support for the biogeochemical niche hypothesis.
Language
English
Source (journal)
Nature Ecology & Evolution. - [S.l.]
Publication
Berlin : Nature research , 2021
ISSN
2397-334X
DOI
10.1038/S41559-020-01348-1
Volume/pages
5 (2021) , p. 184-194
ISI
000604843800004
Pubmed ID
33398105
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Effects of phosphorus limitations on Life, Earth system and Society (IMBALANCE-P).
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 03.02.2021
Last edited 08.12.2024
To cite this reference