Publication
Title
Oil spill detection using machine learning and infrared images
Author
Abstract
The detection of oil spills in water is a frequently researched area, but most of the research has been based on very large patches of crude oil on offshore areas. We present a novel framework for detecting oil spills inside a port environment, while using unmanned areal vehicles (UAV) and a thermal infrared (IR) camera. This framework is split into a training part and an operational part. In the training part, we present a process for automatically annotating RGB images and matching them with the IR images in order to create a dataset. The infrared imaging camera is crucial to be able to detect oil spills during nighttime. This dataset is then used to train on a convolutional neural network (CNN). Seven different CNN segmentation architectures and eight different feature extractors are tested in order to find the best suited combination for this task. In the operational part, we propose a method to have a real-time, onboard UAV oil spill detection using the pre-trained network and a low power interference device. A controlled experiment in the port of Antwerp showed that we are able to achieve an accuracy of 89% while only using the IR camera.
Language
English
Source (journal)
Remote sensing
Publication
2020
ISSN
2072-4292
DOI
10.3390/RS12244090
Volume/pages
12 :24 (2020) , 13 p.
Article Reference
4090
ISI
000603228000001
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 03.02.2021
Last edited 10.11.2024
To cite this reference