Title
|
|
|
|
A ruled residue theorem for function fields of conics
|
|
Author
|
|
|
|
|
|
Abstract
|
|
|
|
The ruled residue theorem characterises residue field extensions for valuations on a rational function field. Under the assumption that the characteristic of the residue field is different from 2 this theorem is extended here to function fields of conics. The main result is that there is at most one extension of a valuation on the base field to the function field of a conic for which the residue field extension is transcendental but not ruled. Furthermore the situation when this valuation is present is characterised. (C) 2020 Elsevier B.V. All rights reserved. |
|
|
Language
|
|
|
|
English
|
|
Source (journal)
|
|
|
|
Journal of pure and applied algebra. - Amsterdam
|
|
Publication
|
|
|
|
Amsterdam
:
2021
|
|
ISSN
|
|
|
|
0022-4049
|
|
DOI
|
|
|
|
10.1016/J.JPAA.2020.106638
|
|
Volume/pages
|
|
|
|
225
:6
(2021)
, 12 p.
|
|
Article Reference
|
|
|
|
106638
|
|
ISI
|
|
|
|
000606674900022
|
|
Medium
|
|
|
|
E-only publicatie
|
|
Full text (Publisher's DOI)
|
|
|
|
|
|
Full text (open access)
|
|
|
|
|
|
Full text (publisher's version - intranet only)
|
|
|
|
|
|