Publication
Title
Identification of vanadium dopant sites in the metal-organic framework DUT-5(Al)
Author
Abstract
Studying the structural environment of the V-IV ions doped in the metal-organic framework (MOF) DUT-5(Al) (((AlOH)-O-III)BPDC) with electron paramagnetic resonance (EPR) reveals four different vanadium-related spectral components. The spin-Hamiltonian parameters are derived by analysis of X-, Q- and W-band powder EPR spectra. Complementary Q-band Electron Nuclear DOuble Resonance (ENDOR) experiments, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX), X-Ray Diffraction (XRD) and Fourier Transform InfraRed (FTIR) measurements are performed to investigate the origin of these spectral components. Two spectral components with well resolved V-51 hyperfine structure are visible, one corresponding to V-IV-O substitution in a large (or open) pore and one to a narrow (or closed) pore variant of this MOF. Furthermore, a broad structureless Lorentzian line assigned to interacting vanadyl centers in each other's close neighborhood grows with increasing V-concentration. The last spectral component is best visible at low V-concentrations. We tentatively attribute it to (V-IV=O)(2+) linked with DMF or dimethylamine in the pores of the MOF. Simulations using these four spectral components convincingly reproduce the experimental spectra and allow to estimate the contribution of each vanadyl species as a function of V-concentration.
Language
English
Source (journal)
Physical chemistry, chemical physics / Royal Society of Chemistry [London] - Cambridge, 1999, currens
Publication
Cambridge : Royal soc chemistry , 2021
ISSN
1463-9076 [print]
1463-9084 [online]
DOI
10.1039/D1CP00695A
Volume/pages
23 :12 (2021) , p. 7088-7100
ISI
000631717100001
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 05.05.2021
Last edited 25.12.2024
To cite this reference