Publication
Title
Towards an autonomous landing system in presence of uncertain obstacles in indoor environments
Author
Abstract
The landing task is fundamental to Micro air vehicles (MAVs) when attempting to land in an unpredictable environment (e.g., presence of static obstacles or moving obstacles). The MAV should immediately detect the environment through its sensors and decide its actions for landing. This paper addresses the problem of the autonomous landing approach of a commercial AR. Drone 2.0 in presence of uncertain obstacles in an indoor environment. A localization methodology to estimate the drone's pose based on the sensor fusion techniques which fuses IMU and Poxyz signals is proposed. In addition, a vision-based approach to detect and estimate the velocity, position of the moving obstacle in the drone's working environment is presented. To control the drone landing accurately, a cascade control based on an Accelerated Particle Swarm Optimization algorithm (APSO) is designed. The simulation and experimental results demonstrate that the obtained model is appropriate for the measured data.
Language
English
Source (journal)
Acta Polytechnica Hungarica
Publication
2021
ISSN
1785-8860
Volume/pages
18 :3 (2021) , p. 197-220
ISI
000629022600011
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 05.05.2021
Last edited 02.10.2024
To cite this reference