Publication
Title
Warming homogenizes apparent temperature sensitivity of ecosystem respiration
Author
Abstract
Warming-induced carbon loss through terrestrial ecosystem respiration (Re) is likely getting stronger in high latitudes and cold regions because of the more rapid warming and higher temperature sensitivity of Re (Q(10)). However, it is not known whether the spatial relationship between Q(10) and temperature also holds temporally under a future warmer climate. Here, we analyzed apparent Q(10) values derived from multiyear observations at 74 FLUXNET sites spanning diverse climates and biomes. We found warming-induced decline in Q(10) is stronger at colder regions than other locations, which is consistent with a meta-analysis of 54 field warming experiments across the globe. We predict future warming will shrink the global variability of Q(10) values to an average of 1.44 across the globe under a high emission trajectory (RCP 8.5) by the end of the century. Therefore, warming-induced carbon loss may be less than previously assumed because of Q(10) homogenization in a warming world.
Language
English
Source (journal)
Science Advances
Publication
2021
ISSN
2375-2548
DOI
10.1126/SCIADV.ABC7358
Volume/pages
7 :15 (2021) , 11 p.
Article Reference
eabc7358
ISI
000642446300002
Pubmed ID
33837072
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Effects of phosphorus limitations on Life, Earth system and Society (IMBALANCE-P).
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 31.05.2021
Last edited 25.11.2024
To cite this reference