Publication
Title
An alternative approach for bioanalytical assay optimization for wastewater-based epidemiology of SARS-CoV-2
Author
Abstract
Wastewater-based epidemiology of SARS-CoV-2 could play a role in monitoring the spread of the virus in the population and controlling possible outbreaks. However, sensitive sample preparation and detection methods are necessary to detect trace levels of SARS-CoV-2 RNA in influent wastewater (IWW). Unlike predecessors, method optimization of a SARS-CoV-2 RNA concentration and detection procedure was performed with IWW samples with high viral SARS-CoV-2 RNA loads. This is of importance since the SARS-CoV-2 genome in IWW might have already been subject to in-sewer degradation into smaller genome fragments or might be present in a different form (e.g. cell debris, …). Centricon Plus-70 (100 kDa) centrifugal filter devices resulted in the lowest and most reproducible Ct-values for SARS-CoV-2 RNA. Lowering the molecular weight cut-off did not improve our limit of detection and quantification (approximately 100 copies/μL for all genes). Quantitative polymerase chain reaction (qPCR) was employed for the amplification of the N1, N2, N3 and E-gene fragments. This is one of the first studies to apply digital polymerase chain reaction (dPCR) for the detection of SARS-CoV-2 RNA in IWW. dPCR showed high variability at low concentration levels (100 copies/μL), indicating that variability in bioanalytical methods for wastewater-based epidemiology of SARS-CoV-2 might be substantial. dPCR results in IWW were in line with the results found with qPCR. On average, the N2-gene fragment showed high in-sample stability in IWW for 10 days of storage at 4 °C. Between-sample variability was substantial due to the low native concentrations in IWW. Additionally, the E-gene fragment proved to be less stable compared to the N2-gene fragment and showed higher variability. Freezing the IWW samples resulted in a 10-fold decay of loads of the N2- and E-gene fragment in IWW.
Language
English
Source (journal)
The science of the total environment. - Amsterdam, 1972, currens
Publication
Amsterdam : 2021
ISSN
0048-9697 [print]
1879-1026 [online]
DOI
10.1016/J.SCITOTENV.2021.148043
Volume/pages
789 (2021) , 11 p.
Article Reference
148043
ISI
000677550800005
Pubmed ID
34323818
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 03.06.2021
Last edited 21.12.2024
To cite this reference